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We dedicate this study to the Rector of the Volgograd State University of Architecture 
and Civil Engineering, Prof. Dr. Vladimir Ignatiev. The investigation of the bifurcation 
points of 2-bar-trusses which he presented in his paper "Stability Analysis of Trusses 
with the Principle of Virtual Displacements" has motivated us to undertake this study. 
 
 
 
 
 
 
 
1. Task 

Figure 1 shows a 2-bar-truss ACB which is symmetric with respect to axis x2. Let the 
modulus of elasticity of the bars be E and the area of their cross-section A. A load P 
acting in the direction of the global axis x2 displaces the apex C of the truss to D. The 
coordinates u1 and u2 of the displacement of node C are to be determined. It is also 
of interest to determine whether there exist values of P for which there is more than 
one equilibrium configuration of the truss. It is assumed that the strain in the bars is 
small and that the elastic limit of the material is not exceeded.  

 

Figure 1:   Displacement of a 2-Bar-Truss under a vertical load P 
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2.  Kinematics of the Truss 

A local coordinate system with origin A is defined for the reference configuration of 
the truss. The base vector e1 for axis y1 points from A to C and has unit length. The 
base vector e2 for axis y2 is orthogonal to e1 and also has unit length. The base 
vector 3 1 2= ×e e e  points in the direction of the global axis x3. The coordinates in the 
local space of the displacement of a point on the axis are denoted by v1 und v2.  

The axial strain of bar AD in the instant configuration of the truss is determined with 
the expressions for the well-known strain tensor of Green, as defined in the nonlinear 
theory of elasticity, and denoted by ε1. 
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The lengths L0 and L1 follow from the geometry of the truss in Fig. 1: 
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The axial strain ε2 of bar BD in the instant configuration of the truss is determined in 
an analogous manner: 
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2.  Constitutive Law 

In the linear theory of trusses, the technical stress σ in a bar is determined as the 
product of the Green strain ε with the modulus of elasticity E of the material of the 
bar. The technical stress is the ratio of the bar force N to the area A of the cross-
section. 

E (6)
N

(7)
A

σ = ε

σ =  

For the work that is done by the inner forces during nonlinear deformation of the 
continuum, it is shown in the theory of elasticity [1] that the technical stress is not 
conjugate to the Green strain ε, but that the 2. Piola-Kirchhoff stress tensor s is 
conjugate to ε. In the definition of this tensor, it is taken into account that the material 
points of base vector e1 of the reference configuration of bar AC are displaced to a 
base vector b1 in the direction of the bar axis AD in the instant configuration, whose 
length in general is not 1. The technical stress σ in bar AD in the instant configuration 
is referred to a vector of unit length in the direction of b1, the coordinate s of the 2. 
Piola-Kirchhoff stress tensor s to the base vector b1. Since the ratio of the lengths of 
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the base vectors e1 and b1 equals the ratio of the reference length L0 to the instant 
length L1 of the bar, the stresses σ and s also have this ratio. 

The relationship between the 2. Piola-Kirchhoff stress tensor S and the strain tensor 
E of Green is treated in the literature for both elastic and plastic material behaviour 
(see for instance chapter 5 in [2]). For elastic engineering materials, the linear consti-
tutive law (8) with constant modulus of elasticity is used, which for linear behaviour 
reduces to (6) (see equations (5.4.9) in [2], (9.4.2) in [3] and (3.118) in [4]). 

 s E (8)= ε  

In the nonlinear theory, the axial force N in a bar is therefore determined as follows 
from the strain ε: 
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3.  Statics of the Truss 

The normal force n1 in bar AD is determined from the strain ε1 of the bar with (9):  
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The normal force n2 in bar BD is determined analogously:  
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The forces which act at node D in the instant configuration are in equilibrium:   
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Substitution of (4), (5), (7) and (9) as well as h = h0 + u2 into (10) leads to:   
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The second equation for the determination of the unknowns u1 and u2 follows by sub-
stitution of (4), (5), (10) and (11) into (13): 
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Equations (14) and (15) are solved for u1 and u2. 
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3.   Solutions of the Governing Equations 

Equation (15) shows that the truss can have two equilibrium configurations for a 
given load P, for which either the first factor or the second factor on the left-hand side 
of the equaqtion is null:   

Solution 1:   u1 = 0 

The trial function u1 = 0 satisfies (15). The load P(u2) follows from (14): 
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The normal force N = n1 = n2 in bars AD and BD follows from (4) and (10) with u1 = 0: 
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The reaction at node A is in equilibrium with the bar force N. Its component in the 
direction of axis x1 is denoted by R1: 
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A given value of P can be associated with several values of the displacement u2. The 
behaviour of the truss is described with the following normalized variables: 
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Equations (16) and (18) are cast into normalized form: 
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The behaviour of the truss is shown in Fig.2. For the load range from p = -0.3849 to p 
= 0.3849 the truss has three equilibrium configurations. The three configurations for 
the load p = 0 are the reference configuration, a configuration in which the bars are 
collinear and a configuration which is the mirror image of the reference configuration. 
In the range -2.0 ≤ s ≤ 0.0 the load has extreme values p = -0.3849 at s = -0.44265 
and p = 0.3849 at s = -1.57735.   
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2w   =  - 0.42265 2w   =  - 1.00000 2w   =  - 1.57735

  

      

Fig 2:  Displacement and reaction of a 2-bar-truss with u1 = 0 

The algebraic values of the load and the horizontal reaction vary as follows with the 
displacement of the truss: 

                    s >   -0.42265  :      decreasing load    increasing reaction  
-0.42265  ≥  s  >  -1.00000  :       increasing load     increasing reaction 
-1.00000  ≥  s  >  -1.57735  :      increasing load     decreasing reaction 
-1.57735  ≥  s  >  - 2.0000   :      decreasing load    decreasing reaction 
-2.00000  ≤  s                      :      decreasing load    decreasing reaction 
 

Solution 2:   u1 ≠ 0 

The displacement u1 is chosen so that the second factor on the left-hand side of (15) 
becomes null: 
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The displacement u1 is substituted from (24) into expression (14) for the load: 
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A parameter m is defined for the geometry of the truss. The load and the 
displacements are normalised: 
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Substitution of (26) to (29) in to (24) and (25) leads to equations for w1 and w2   
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Substitution of (31) in to (30) leads to the quadratic equation (32) in w1, which has 
real roots if condition (33) is satisfied. 
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The load q is real if contition (34) is satisfied. The aspect ratio a = 0.7071 h0 
corresponds to an angle of  45 degrees between the axes x1 and y1. 
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For a given value of m which satisfies condition (34), there are maximal loads qc1 und 
qc2  which satisfy condition (33):   
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Fig. 3 shows the absolute value of the bifurcation load as a function of the aspect 
ratio of the truss.  

 

Figure 3 :   Variation of the bifurcation load |qcr| with the aspect ratio 
0

a
h

 

To each load c1 c2q q q≤ ≤ there corresponds a displacement state (w1,w2) which is 
determined with (31) and (32). The locus of the displacement of the apex of the truss 
is a circle with center (x1,x2) = (0,0) und radius 1 m− : 

 2 2
1 2(w ) (1 w ) 1 m (37)+ + = −  
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Fig. 4 shows the load bearing behaviour of a 2-bar-truss with aspect ratio a = 0.3h0. 

The load is null at point C. As the absolute value of the negative load increases, point 
C is displaced to D1. This path is determined with solution 1, so that w1 is null and the 
displacement w2 follows from (22) and (29). The bifurcation load qc1 is reached at 
point D1. As the absolute value of the lateral displacement w1 increases, the absolute 
value of the load decreases and reaches null at point D2 for w2 = 0. If the load is then 
increased, the absolute value of the lateral displacement w1 decreases and reaches 
null at point D3 for the load qc2. If the load is then decreased, the path is determined 
by solution 1 with w1 = 0: the displacement w2 is determined with (22) and (29). At 
point D4 with location (0,-h0) the load is again null. Point D4 is the mirror image of 
point C. Fig.5 shows the relationship between the normalised load q and the 
normalised displacement w2 for the specified load path.  
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Figure 4 :  Displacement states of a truss with aspect ratio a = 0.3 h0  
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Figure  5:  Load q as function of the displacement w2 of node C in Fig. 4 
 

5.   Significance of the Yield Strain of the Material 

The extremal axial strain εc in the bars of the truss for solution 1 is determined with 
equations (10) and (17): 
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The aspect ratio h0 = 0.2 L0 leads to the strain εc = -0.020. For solution 2, the extre-
mal strain corresponding to the bifurcation load is determined with (4):  
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The aspect ratio a = 0.2 L0 leads to the strain εc = - 0.010. The yield strain of common 
engineering materials is considerable smaller. For structural steel, it has the order of 
magnitude 0.0012. The geometric parameters from (38) und (39) which correspond 
to this strain are: 

solution 1:  h0  =  0.04899 L0                                                                                                                           (40) 

solution 2:  a   =  0.06928 L0                                                                                   (41) 

The aspect ratio (40) corresponds to an angle of inclination of the bar axis of 2.81 
degrees, thus an angle change in direction of 5.62 degrees at the apex of the truss. 
The aspect ratio (41) corresponds to an angle of inclination of the bar axis of 86.03 
degrees, this a tip angle of 7.95 Grad. For larger aspect ratios, the behaviour of the 
truss contrary to the assumptions of the theory is no longer elastic.  
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6.   Limit Points of the Truss 
 
Points on the displacement-load diagram of a truss which correspond to unstable 
configurations of the truss are called limit points of the diagram or limit points of (the 
behaviour of) the truss.  
 
If the ratio of the half base a to the height h0 of the truss is less than or equal 0.7071, 
the truss has a limit point which is a bifurcation point. A load in the direction of axis x2 
which is less than the bifurcation load causes a displacement in the same direction. 
After the bifurcation point is reached, the load causes a displacement in the direction 
x1 although it continues to act in the direction of axis x2.  The truss is unstable at the 
bifurcation point: an incremental displacement in the direction of axis x1 takes place 
at constant load. If the aspect ratio exceeds 0.7071, the truss does not have a 
bifurcation point. 
 
If the ratio of the height h0 to the half base width a  of the truss is small, the truss has 
a snap-through point as limit point. For sufficiently small values of h0 to a  the axial 
strain in the bars lies in the linear elastic range of the material, so that the 
assumptions of the theory are satisfied. The directions of the load and of the 
displacement at node C do not change at the snap-through point. This is in contrast 
with a bifurcation point, where the direction of the displacement changes. At the 
snap-through point, the truss is unstable, since an incremental displacement occurs 
in the direction of axis x2 without a change in the load. 
 
Since the truss is unstable at the limit points, the increment of its displacement at the 
limit point is an eigenform of its instant configuration. The associated eigenvalue is 
null. The eigenform for a bifurcation point differs from the eigenform for a snap-
through point. At a bifurcation point, the eigenvector is orthogonal to the load vector. 
The eigenform at a snap-through point does not have this property.  
 
For larger space trusses, an analytic determination of the limit points as in the 
present example is usually not possible. Therefore methods are being investigated 
which are derived from the general nonlinear theory of elasticity and permit a 
numerical determination of limit points for complex space trusses.  
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