УДК 528.3.021.7, 721.011.2 (528.37/.38)

## И. В. Рубцов, Ю. В. Андрусенко, М. С. Савин, М. В. Срывкова

## ОПРЕДЕЛЕНИЕ КРЕНОВ ВЫСОТНЫХ ЗДАНИЙ С ИСПОЛЬЗОВАНИЕМ АСТРОНОМИЧЕСКИХ ТЕОДОЛИТОВ ДКМ-ЗА

Приведены две методики определения кренов высотных зданий с использованием астрономических теодолитов.

Ключевые слова: астрономический теодолит, высотное здание, комплекс «Триумф-палас», крен, метод наклонного проектирования.

Two methodologies of determination of high-rise buildings titles using astronomical theodolites DKM-3A are described.

 $K\ e\ y\ w\ o\ r\ d\ s$  : astronomical theodolite, high-rise building, Triumf-palas complex, title, inclined design method.

Одной из актуальных задач в высотном строительстве является определение кренов высотных зданий и сооружений. Предлагается усовершенствованный метод наклонного проектирования при определении кренов уникальных высотных зданий и сооружений с применением астрономических приборов с ломаной зеркально-линзовой трубой, таких как ДКМ-3А.

Конструкция этого теодолита позволяет выполнять визирование и измерение горизонтальных и вертикальных углов при углах наклона зрительной трубы в диапазоне от 0 до  $90^{\circ}$ . Эта характеристика в условиях сложившейся современной стесненной городской застройки позволяет использовать метод наклонного проектирования более широко, так как теодолит возможно размещать на незначительных расстояниях D от объекта наблюдения по сравнению с его высотой H (рис. 1).

Уровень при алидаде горизонтального круга ДКМ-3A имеет цену деления  $\tau=10$ ", а накладной уровень  $\tau=2.5$ ", что позволяет горизонтировать теодолит и проектировать наблюдаемую точку на горизонт установки прибора с высокой точностью.

В общем случае точность определения линейных величин кренов методом наклонного проектирования определяется следующими погрешностями:  $m_{\rm H}$  — погрешность за наклон вертикальной оси вращения теодолита,  $m_{\rm B}$  — погрешность визирования на точку,  $m_{\rm O}$  — погрешность визирования на отсчет шкалы.

Основной погрешностью является погрешность  $m_{\rm H}$ , которая подсчитывается по формуле

$$m_{\rm H} = \delta \, \mathrm{tg} \, \beta$$
,

где  $\delta$  — отклонение вертикальной оси вращения теодолита от отвесного положения;  $\beta$  — угол наклона линии визирования.

Погрешности визирования на точку и отсчитывания по шкале вычисляются по формулам:

$$m_{\rm B} = \frac{20''}{\rm v} \frac{S}{206265};$$

$$m_{\rm o} = \frac{20''}{\rm v} \frac{d}{206265}$$

где v — увеличение зрительной трубы теодолита; d — расстояние до объекта. Итоговая погрешность контроля отклонения от вертикали высотного здания методом наклонного проектирования

$$M_{\rm H} = \sqrt{m_{\rm H}^2 + m_{\rm B}^2 + m_{\rm O}^2}$$
.

Примерный расчет итоговой погрешности при визировании на разные высоты и изменение расстояния от места установки теодолита до здания приведен в табл. 1.

При выполнении измерениий кренов необходимо ослабить неблагоприятное влияние внешних условий, искажающих результаты измерений [1]. К основным факторам относятся низкая облачность, туман и осадки, снижающие видимость наблюдаемых точек на зданий. Сильный ветер и неравномерный нагрев частей используемого высокоточного прибора солнечными лучами приводят к смещению его вертикальной оси. Измерения необходимо выполнять при ветре <10 м/с, хорошей оптической видимости элементов здания по всей высоте, температуре воздуха в диапазоне от минус 10 до плюс 30 °С. Для защиты от ветра и солнечных лучей необходимо использовать зонт или защитный тент.

Для измерения кренов высотных городских зданий и сооружений зданий и сооружений наклонным проектированием рекомендованы две методики [2]: без введения поправки за отклонение пузырька накладного уровня от нульпункта и с введением поправки. Рассмотрим их более подробно применительно к теодолиту ДКМ-3A.

Методика без введения поправки за отклонение пузырька накладного уровня. В створе контролируемых осей здания на удалении 10...50 м от стен выбирают места установки теодолита так, чтобы обеспечивалась видимость наблюдаемых точек контролируемых осей здания от уровня этажа, принятого за исходный, и до максимальной высоты здания. Точки установки закрепляют дюбелями или обозначают краской.

Устанавливают теодолит ДКМ-3A над точкой, закрывают зонтом от нагрева солнечными лучами и горизонтируют по накладному уровню.

У наблюдаемой оси здания на уровне этажа, принятого за исходный, устанавливают на штативе отсчетную шкалу в горизонтальном положении. В журнале наблюдений фиксируют положение 0 шкалы относительно линии визирования.

Наводят зрительную трубу (ЗТ) теодолита на наблюдаемую точку оси на уровне исходного этажа здания, приводят пузырек накладного уровня в середину (рис. 1). Открепляют ЗТ и наклоняют ее до пересечения сетки нитей со шкалой рейки. Записывают в журнал отсчет до мм (табл. 1). Наводят ЗТ теодолита на наблюдаемую точку оси определяемого уровня (этажа), наклон которого контролируется. Пузырек накладного уровня приводят в середину, после чего открепляют ЗТ и наклоняют ее до пересечения сетки нитей со шкалой рейки. Записывают в журнал отсчет до мм.

Таблица 1 Расчет точности проектирования вертикали здания теодолитом DKM-3A  $(1 \text{ деление уровня } \tau = 2.50")$ 

| <i>D</i> , м | Н, м                                     |               |                                      | 50.00            |                                                 |               |                                      | 100.00              |                                          |               |                         | 250.00               |                                          |               |                                      | 500.00           |
|--------------|------------------------------------------|---------------|--------------------------------------|------------------|-------------------------------------------------|---------------|--------------------------------------|---------------------|------------------------------------------|---------------|-------------------------|----------------------|------------------------------------------|---------------|--------------------------------------|------------------|
|              | 50.99                                    | $m_{\rm o}$ , | $m_{\scriptscriptstyle \mathrm{B}},$ | М <sub>н</sub> , | 100.50                                          | $m_{\rm o}$ , | $m_{\scriptscriptstyle \mathrm{B}},$ | М <sub>н</sub> , мм | 250.20                                   | $m_{\rm o}$ , | <i>т</i> <sub>в</sub> , | M <sub>H</sub> , 500 | 500.10                                   | $m_{\rm o}$ , | $m_{\scriptscriptstyle \mathrm{B}},$ | М <sub>н</sub> , |
|              | $m_{\scriptscriptstyle \mathrm{H}}$ , mm | MM            | MM                                   | MM               | $m_{\scriptscriptstyle \mathrm{H}},\mathrm{MM}$ | MM            | MM                                   | 1,1н, 141141        | $m_{\scriptscriptstyle \mathrm{H}}$ , MM | MM            |                         | MM                   | $m_{\scriptscriptstyle \mathrm{H}}$ , MM | MM            | MM                                   | MM               |
| 10.00        | 0.61                                     | 0.02          | 0.11                                 | 0.62             | 1.21                                            | 0.02          | 0.22                                 | 1.23                | 3.03                                     | 0.02          | 0.54                    | 3.08                 | 6.06                                     | 0.02          | 1.08                                 | 6.16             |
|              | 53.85                                    |               |                                      |                  | 101.98                                          |               |                                      |                     | 250.80                                   |               |                         |                      | 500.40                                   |               |                                      |                  |
|              |                                          |               |                                      |                  |                                                 |               |                                      |                     |                                          |               |                         |                      |                                          |               |                                      |                  |
| 20.00        | 0.61                                     | 0.04          | 0.12                                 | 0.62             | 1.21                                            | 0.04          | 0.22                                 | 1.23                | 3.03                                     | 0.04          | 0.54                    | 3.08                 | 6.06                                     | 0.04          | 1.08                                 | 6.16             |
|              |                                          |               |                                      |                  |                                                 |               |                                      |                     |                                          |               |                         |                      |                                          |               |                                      |                  |
|              | 64.03                                    |               |                                      |                  | 107.70                                          |               |                                      |                     | 253.18                                   |               |                         |                      | 501.60                                   |               |                                      |                  |
| 40.00        | 0.61                                     | 0.09          | 0.14                                 | 0.63             | 1.21                                            | 0.09          | 0.23                                 | 1.24                | 3.03                                     | 0.09          | 0.55                    | 3.08                 | 6.06                                     | 0.09          | 1.08                                 | 6.16             |
|              |                                          |               |                                      |                  |                                                 |               |                                      |                     |                                          |               |                         |                      |                                          |               |                                      |                  |
|              | 111.80                                   |               |                                      |                  | 141.42                                          |               |                                      |                     | 269.26                                   |               |                         |                      | 509.90                                   |               |                                      |                  |
| 100.00       | 0.61                                     | 0.22          | 0.24                                 | 0.69             | 1.21                                            | 0.22          | 0.30                                 | 1.27                | 3.03                                     | 0.22          | 0.58                    | 3.09                 | 6.06                                     | 0.22          | 1.10                                 | 6.16             |
|              |                                          |               |                                      |                  |                                                 |               |                                      |                     |                                          |               |                         |                      |                                          |               |                                      |                  |

*Примечание:* D, м — горизонтальное расстояние от теодолита до здания; H, м — высота точки визирования.

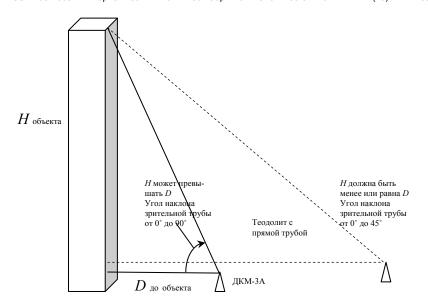



Рис. 1. Схема размещения теодолитов с прямой трубой и ДКМ-3А

Последовательно выполняют визирование и снятие отсчетов для всех уровней оси здания, наклон которых определяется с данной точки. Разворачивают теодолит на  $180^{\circ}$  и выполняют измерения кренов при этом положении теодолита. Смещают шкалу рейки в горизонтальной плоскости на 3...5 см и выполняют еще один прием измерений.

Пример записи и вычисления величин частных кренов вдоль осей, относительных кренов и оценка точности измерений приведены в табл. 2.

Таблица 2 Точка 20, ось 6/2, ноль рейки слева

| № эта-                               |                   | I пр              | ием  |                       |                   | Иπ                | рием |                       | 'nΖ                          |                         |               |
|--------------------------------------|-------------------|-------------------|------|-----------------------|-------------------|-------------------|------|-----------------------|------------------------------|-------------------------|---------------|
| жа и<br>отмет-<br>ка<br>уровня,<br>м | КЛ <sub>1</sub> , | КП <sub>1</sub> , | Ср., | Част-<br>ный<br>крен, | КЛ <sub>2</sub> , | КП <sub>2</sub> , | Ср., | Част-<br>ный<br>крен, | <i>d</i><br>I пр.–<br>II пр. | Ср. частный<br>крен, мм | Отн.<br>уклон |
| 1 (4.0)                              | 0255              | 0259              | 0257 | 0                     | 0366              | 0368              | 0367 | 0                     | 0                            | 0                       |               |
| 10<br>(41.0)                         | 0265              | 0267              | 0266 | 9                     | 0378              | 0379              | 0378 | 11                    | 3                            | 10                      | 1:3<br>700    |
| 25<br>(94.5)                         | 0278              | 0283              | 0280 | 23                    | 0392              | 0396              | 0394 | 27                    | 4                            | 25                      | 1:3<br>620    |
| 50<br>(250.5)                        | 0290              | 0295              | 0292 | 35                    | 0406              | 0408              | 0407 | 40                    | 4                            | 38                      | 1:6<br>580    |
|                                      |                   |                   |      |                       |                   |                   |      |                       |                              |                         |               |

СКП разностей 
$$d$$
  $m_d = \sqrt{\frac{d^2}{n}} = 3,2$  мм; СКП одного измерения  $m_\Delta = \frac{m_d}{\sqrt{2}} = 2,3$  мм.

Методика с введением поправки за отклонение пузырька накладного уровня. Наводят ЗТ теодолита на наблюдаемую точку оси на уровне нижнего исходного этажа здания и фиксируют в этом положении. Сфокусировав изображение точки, подъемными винтами подставки теодолита приводят пузырек накладного уровня в середину. Выполняют точное визирование перекрестием сетки нитей ЗТ на грань оси, записывают в журнал отсчеты по краям пузырька уровня ( $\Pi$ ,  $\Pi$ )0, когда нуль шкалы уровня справа. Записывают в журнал величину угла наклона линии визирования относительно горизонтальной плоскости. Открепляют ЗТ и наводятся на шкалу рейки, после чего снимают и записывают в журнал отсчет по вертикальной нити сетки до мм.

Наводят 3Т теодолита на наблюдаемую точку оси определяемого уровня (этажа), наклон которого контролируется, и, опуская трубу на шкалу рейки, снимают и записывают в журнал отсчет по вертикальной нити сетки до мм.

Последовательно выполняют визирование на все наблюдаемые точки со снятием отсчетов по шкале рейки для всех уровней оси здания, наклон которых определяется с данной точки. Также выполняют измерения кренов при другом положении вертикального круга теодолита, снимая и записывая в журнал отсчеты по краям пузырька уровня  $_0(\Pi,\Pi)$ , когда нуль шкалы уровня слева.

Смещают шкалу рейки в горизонтальной плоскости на 3...5 см и выполняют еще один прием измерения.

Пример записи и вычисления величин частных кренов вдоль осей, относительных кренов и оценка точности измерений приведен ниже.

Значение наклонности b в полуделениях уровня вычисляют по формуле

$$b = \frac{(\Pi + \Pi)_0 - {}_0(\Pi + \Pi)}{2}.$$

Поправку за наклонность, мм, вычислить по формуле

$$\Delta Nb = b \frac{\tau}{2} \operatorname{tg} \alpha D / 206265.$$

Описанная в статье методика была успешно применена при контроле кренов самого высокого в Европе жилого комплекса «Триумф-палас» (рис. 2), результаты измерений приведены в табл. 3.



Рис. 2. Жилой комплекс «Триумф-палас»

Точка 20, ось 6/2, ноль рейки слева, d=30 м, au=2.5"

| Угол на-                                            |                                                               |      | I                                              | прием |                                                                                  |                             |                                                               |      | II                                                |      |                            |    |                              |                                    |                    |
|-----------------------------------------------------|---------------------------------------------------------------|------|------------------------------------------------|-------|----------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|------|---------------------------------------------------|------|----------------------------|----|------------------------------|------------------------------------|--------------------|
| клона<br>линии №<br>этажа и<br>отметка<br>уровня, м | (уровень) <sub>0</sub> <sup>дел</sup><br>КЛ <sub>1</sub> , мм |      | $_{0}$ (уровень) <sup>дел</sup> КП $_{1}$ , мм |       | $b$ $\Delta N_{b({\scriptscriptstyle MM})}$ ${\rm Cp.+}~\Delta N_b$ , ${\rm MM}$ | Част-<br>ный<br>крен,<br>мм | (уровень) <sub>0</sub> <sup>дел</sup><br>КЛ <sub>1</sub> , мм |      | 。(уровень) <sup>дел</sup><br>КП <sub>1</sub> , мм |      | b Част- $Cp.+$ ный крен, м |    | <i>d</i><br>I пр.–<br>II пр. | Ср.<br>част-<br>ный<br>крен,<br>мм | Отн.<br>ук-<br>лон |
| 5                                                   | 28.0                                                          | 15.0 | 14.0                                           | 27.5  | 0.8                                                                              |                             | 28.0                                                          | 15.0 | 14.0                                              | 27.5 | 0.8                        |    |                              |                                    |                    |
| 1                                                   |                                                               | 43.0 |                                                | 41.5  | 0.0                                                                              |                             |                                                               | 43.0 |                                                   | 41.5 | 0.0                        |    |                              |                                    |                    |
| 4                                                   |                                                               | 255  |                                                | 259   | 257                                                                              | 0                           |                                                               | 285  |                                                   | 288  | 287                        | 0  | 0                            | 0                                  |                    |
| 45                                                  | 29.0                                                          | 16.0 | 13.5                                           | 26.5  | 2.5                                                                              |                             | 29                                                            | 16   | 13.5                                              | 26.5 | 2.5                        |    |                              |                                    |                    |
| 10                                                  |                                                               | 45.0 |                                                | 40.0  | 0.5                                                                              |                             |                                                               | 45   |                                                   | 40   | 0.5                        |    |                              |                                    | 1                  |
| 41                                                  |                                                               | 265  |                                                | 267   | 266                                                                              | 9                           |                                                               | 297  |                                                   | 299  | 298                        | 12 | -3                           | 11                                 | 3460               |
| 63                                                  | 30.0                                                          | 17.0 | 11.5                                           | 24.5  | 5.5                                                                              |                             | 30                                                            | 17   | 11.5                                              | 24.5 | 5.5                        |    |                              |                                    |                    |
| 25                                                  |                                                               | 47.0 |                                                | 36.0  | 2.0                                                                              |                             |                                                               | 47   |                                                   | 36   | 2.0                        |    |                              |                                    | 1                  |
| 94.5                                                |                                                               | 278  |                                                | 283   | 282                                                                              | 25                          |                                                               | 311  |                                                   | 314  | 314                        | 28 | -3                           | 27                                 | 3389               |
| 82                                                  | 31.2                                                          | 18.2 | 12.0                                           | 25.0  | 6.2                                                                              |                             | 31.2                                                          | 18.2 | 12                                                | 25   | 6.2                        |    |                              |                                    |                    |
| 50                                                  |                                                               | 49.4 |                                                | 37.0  | 8.0                                                                              |                             |                                                               | 49.4 |                                                   | 37   | 8.0                        |    |                              |                                    | 1                  |
| 250.5                                               |                                                               | 290  |                                                | 295   | 301                                                                              | 44                          |                                                               | 325  |                                                   | 328  | 335                        | 48 | -5                           | 46                                 | 5387               |
|                                                     |                                                               |      |                                                |       |                                                                                  |                             |                                                               |      |                                                   |      |                            |    |                              |                                    |                    |

Примечание: СКП одного измерения = 2,0 м.

## БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Назаров И. А. Разработка и исследование современных технологий геодезических обмерных работ при воссоздании живописного облика храма Христа Спасителя : дисс... канд. техн. наук. М. : МИИГАиК, 2007.
- 2. *Левчук Г. П., Новак В. Е., Конусов В. Г.* Прикладная геодезия: основные методы и принципы инженерно-геодезических работ. М.: Недра, 1981.
- 1. *Nazarov I. A.* Razrabotka i issledovanie sovremennykh tekhnologi geodezicheskikh obmernykh rabot pri vossozdanii zhivopisnogo oblika khrama Khrista Spasitelya : diss... kand. tekhn. nauk. M. : MIIGAiK, 2007.
- 2. Levchuk G. P., Novak V. E., Konusov V. G. Prikladnaya geodesiya: osnovnye metody i printsypy inzhenerno-geodezicheskikh rabot. M.: Nedra, 1981.

© Рубцов И. В., Андрусенко Ю. В., Савин М. С., Срывкова М. В., 2011

Поступила в редакцию в октябре 2011 г.

## Ссылка для цитирования:

Рубцов И. В., Андрусенко Ю. В., Савин М. С., Срывкова М. В. Определение кренов высотных зданий с использованием астрономических теодолитов ДКМ-3А // Интернет-вестник ВолгГАСУ. Сер.: Политематическая. 2011. Вып. 4(19).